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1. Introduction

Topological defects are of considerable interest in many areas of theoretical and mathemat-

ical physics, and find application in topics as diverse as superconductivity, nuclear physics

and cosmology, as well as having interesting mathematical properties in their own right.

Whilst most of these fields are concerned with the study of topological defects in non-

dynamical and often flat spacetimes, within the field of cosmology it becomes important

to examine the effect of gravity on the properties and behaviour of these objects.

When studying topological defects, one is often interested in finding the static configu-

rations that minimise the total energy within each topologically distinct class of boundary

conditions. Such configurations are the stable, classical ground states of the theory, and also

form a convenient basis for numerical and analytical studies of low energy defect dynamics.

In Minkowski space, or other non-dynamical, highly symmetrical spacetimes, there is

an established method, attributed to Bogomol’nyi, for finding such minimum-energy field

configurations in many models that admit solitonic solutions (for a review, see [1]). It

involves making use of a clever rearrangement of the energy-momentum tensor to write the

total energy as

E =

∫

d3xT 0
0 = |Q| + P , (1.1)

where Q is a topologically conserved charge, related to the asymptotic boundary conditions,

and P is a manifestly non-negative spatial volume integral. This leads to the following lower

bound on the energy of defects

E ≥ |Q| , (1.2)

which is called a Bogomol’nyi bound. The energy is minimised when P is zero, and by

finding the conditions under which P vanishes, we obtain a set of field equations, called

Bogomol’nyi equations, that characterise the minimum-energy field configurations.

– 1 –
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However, for gravitational field theories, such energy bounds have been harder to

come by, due to the difficulty in finding a suitable expression for the total energy, and the

more complicated form of the energy-momentum tensor for a general metric. One way

forward is to reduce the number of degrees of freedom in the metric by imposing certain

exact symmetries on the spacetime [2]. When working within a well-chosen class of highly

symmetric metrics, the expressions for the total energy and the energy-momentum tensor

become very similar to their counterparts from the corresponding non-gravitational theory,

and therefore we can perform a similar rearrangement to minimise the energy.

This approach is widely used [3 – 5], and the energy bounds and first-order equations

that are derived in this manner are usually called Bogomol’nyi bounds and equations. The

beauty of this method is that it is a natural extension of the familiar non-gravitational

Bogomol’nyi method – in fact, a gravitational bound of this sort follows wherever a similar

bound exists for the corresponding non-gravitational theory. This result, which suggests

that Bogomol’nyi bounds generally survive coupling to gravity [6], means that there is an

implicit assumption in much of the literature on gravitational topological defects that a non-

gravitational Bogomol’nyi bound is enough to establish the stability of bound-saturating

solutions even after gravity is taken into account [7, 8].

However, as the assumption of symmetry is made prior to minimising the energy, we

cannot in fact preclude the possibility that the energy bounds provided by this method

may be saturated, or even violated, by defects that do not possess the assumed symmetries.

Intuitively speaking, we do not expect such bound-violating solutions to exist — we would

be surprised to find that non-gravitational Bogomol’nyi bounds do not survive coupling

to gravity. Nevertheless, without a more rigorous derivation of Bogomol’nyi bounds for

gravitational theories, the stability of the widely-studied defect solutions that saturate

these bounds is called into question.

Furthermore, it is often the case in non-gravitational theories that there exist multi-

defect solutions that saturate the Bogomol’nyi bounds, at least for some region of the

parameter space. Again, it seems reasonable to consider whether such solutions survive the

coupling to gravity — however, unless one can guess a sufficiently accurate ansatz for the

metric beforehand, the Bogomol’nyi technique of [2] cannot help us answer this question.

For these reasons, it would be worthwhile to pursue an alternative method for finding

minimum-energy solutions in gravitational field theories that does not depend on making

prior assumptions of symmetry. The pursuit of such a method would involve tackling the

problems mentioned above — that of finding an appropriate expression for the energy, and

that of rearranging this expression in the presence of a large number of degrees of freedom

in the metric — head on.

The reader may have already noticed a striking resemblance between the problem

described here and the positive energy theorem in general relativity. In fact, Witten’s proof

of the positive energy theorem [9], with its use of a spinorial expression for the total energy,

has already proved rather useful in establishing Bogomol’nyi bounds for certain theories.

Using techniques derived from this proof, full Bogomol’nyi bounds have been constructed

for certain three-dimensional [10] and four-dimensional [11] supergravity models with D-

term symmetry breaking.

– 2 –
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In this paper, we extend these results and demonstrate how, using techniques from

the positive energy theorem, we may derive Bogomol’nyi bounds for any gravitational

field theory wherever a similar bound exists for its non-gravitational counterpart. Due to

the cosmological motivation for this study, we only consider cosmic strings from now on.

However, we expect the methods presented here to be applicable, following appropriate

modifications, to defects of other dimensionalities, such as domain walls and monopoles.

The rest of this paper is organised as follows. In section 2 we describe the asymptotic

structure of a spacetime containing a long cosmic string, and consider how to express the

total energy of such a spacetime. We use this expression in section 3 to find a Bogomol’nyi

bound for the gravitational version of the abelian-Higgs model and subsequently exam-

ine how this model forms the basis for finding Bogomol’nyi bounds for many other field

theories. Then in section 4, we compare our gravitational Bogomol’nyi procedure to the

traditional non-gravitational Bogomol’nyi procedure, and show that the former is really

a generalisation of the latter. In this way we confirm that non-gravitational Bogomol’nyi

bounds, and the single-vortex solutions that saturate them, do survive coupling to gravity.

We conclude in section 5.

2. Cosmic string spacetimes

If we are to minimise the total energy of a spacetime without relying on working within

a class of highly symmetric metrics, then we must first identify a suitable expression for

the total energy. In general relativity, the notion of total energy is closely tied up with the

asymptotic structure of the spacetime under consideration. This is because the energy is a

global quantity, dependent on the behaviour of the fields at every point on some hypersur-

face that stretches to infinity. Therefore, without being able to effectively compactify the

spacetime, by specifying an appropriate asymptotic structure, we cannot hope to calculate

the total energy of a system.

Where we have a compact source, the usual definitions of the energy (such as the

ADM energy) stem from the canonical notion of an asymptotically flat spacetime [12].

Such a spacetime can be compactified, with a single point representing spatial infinity, and

the spacetime becomes asymptotically flat in every direction. However, it is clear that

this standard notion of asymptotic flatness is not appropriate for describing a long cosmic

string — essentially because there is now an axial direction (running parallel to the string)

along which fields do not fall to zero and we do not reach asymptotic flatness.

To resolve this problem, we must modify our notion of asymptotic flatness for a cosmic

string spacetime, by distinguishing between radial infinity (where we do have asymptotic

flatness) and the asymptotic behaviour in the axial direction, on which we have to impose

suitable conditions in order to have a well-defined energy. We shall accomplish this by

compactifying one spatial dimension on a circle of circumference Lz and wrapping the

cosmic string around this circle. In the limit Lz → ∞, edge effects should vanish, and the

results we obtain should reasonably represent the properties of an infinitely long string.

Having thus described the asymptotic structure of a cosmic string spacetime, we note

that, due to asymptotic flatness, there exists a neighbourhood of radial infinity, the asymp-
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totic region, in which we can find asymptotic cylindrical coordinates, (t, r, θ, z) for r greater

than some constant r0, in which the metric tends to the following limit as r → ∞:

ds2 = dt2 − dr2 − (1 − δ/2π)2r2dθ2 − dz2 , (2.1)

where δ is the conical deficit angle. These coordinates shall turn out to be useful later on,

when we examine the behaviour of fields near radial infinity. In order to fix the deficit angle

δ, we recall that the solutions we are interested in should asymptotically tend to the static,

cylindrically symmetric bound-saturating solutions that have already been found using the

traditional Bogomol’nyi method of [2] (as these are the solutions that are relevant to a

discussion about the stability of static, cylindrically symmetric solutions). For the static

cylindrically symmetric solutions, one finds that δ = 2π|Q|, where Q is the topological

charge of the string. Therefore, we fix δ in a similar manner here.

We now turn to the question of how to define the total energy of a cosmic string

spacetime. In a canonical asymptotically flat spacetime, the ADM energy is defined with

respect to some maximal spacelike hypersurface S (i.e. a spacelike hypersurface that ex-

tends to spatial infinity) in terms of a surface integral over the asymptotic boundary of S,

∂S, at spatial infinity. Given such an integral expression for the ADM energy, it seems

reasonable to speculate that the energy of a cosmic string spacetime can be given by a

similar expression, with the only difference being that we replace spatial infinity by radial

infinity, resulting in ∂S having the topology of a torus, rather than a sphere. If this is the

case (as is confirmed in appendix A), then in order to find an expression for the energy of a

cosmic string spacetime that satisfies the requirements set out in the Introduction, we only

need find an appropriate expression for the ADM energy satisfying the same conditions:

we expect this expression to carry over to the cosmic string spacetime following a simple

change of the asymptotic surface of integration.

All that now remains is to identify a suitable expression for the ADM energy — one

that, as described in the Introduction, is likely to admit a Bogomol’nyi rearrangement for

a fully general metric. In particular, it would be ideal if the energy expression had a clear

connection to the Minkowski spacetime expression for the total energy, in terms of a volume

integral over the energy-momentum tensor.

Such an energy expression has been provided by Nester [13] during his proof of the

positive energy theorem:1

pµu∞

µ =
1

2

∫

∂S

dSµνE
µν , (2.2)

where

Eµν = iεµνρσ
(

η̄γ5γρ∇ση −∇σηγ5γρη
)

(2.3)

is the Witten-Nester 2-form.2 The parameter η is an arbitrary Dirac spinor field that is

asymptotically Killing (∇µη → 0), and uµ = η̄γµη is hence an asymptotically constant,

timelike vector field. The asymptotic 4-vector u∞µ is the limit of uµ at spatial infinity, and

1Throughout this paper we work in natural units, with 8πG = 1.
2The spinor covariant derivative is given by ∇µη = ∂µη + 1

4
ω

νρ
µ γνρη, where γµν = γ[µγν]. Underlined

indices are used to represent frame (tetrad) components.
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represents the 4-velocity of the observer at spatial infinity who is measuring the energy of

the system.

Having converted this expression into a volume integral with the aid of the divergence

theorem, we apply the identity

∇[µ∇ν]η = −1

8
R

ρσ
µνγρση , (2.4)

and Einstein’s equation to find that

pµu∞

µ =

∫

S

dSµ

{

T µ
νu

ν − 2∇νηγ
νµρ∇ρη

}

. (2.5)

This integral is very similar to the Minkowski spacetime expression for the energy. In

fact, in a static spacetime, with S normal to the timelike and Killing t-direction, we can

choose η to be an exact Killing spinor such that uµ = (1, 0, 0, 0) everywhere, and the above

expression reduces to

p0 =

∫

S

dV T 0
0 , (2.6)

which is exactly the Minkowski spacetime expression for the energy – the very expres-

sion that is rearranged during the non-gravitational Bogomol’nyi procedure. This is an

encouraging sign that we may be able to rearrange the Witten-Nester energy expression,

in an analogous manner to the non-gravitational rearrangement of (2.6), in order to find

Bogomol’nyi bounds in the presence of gravity.

3. Bogomol’nyi bounds for gravitational field theories

We shall now examine how the Witten-Nester energy expression may be used to find

Bogomol’nyi bounds for gravitational field theories in cosmic string spacetimes.

Upon transferring the Witten-Nester energy expression to a cosmic string spacetime,

we immediately encounter a hitch: there are no globally well-defined asymptotically Killing

spinors in a cosmic string spacetime with non-zero deficit angle. This can be seen quite

simply by noting that the θ component of the Killing spinor equation is asymptotically

∂θη −
1

2
C ′γ12η = 0 , (3.1)

where C ′ = 1 − δ/2π. This has the general solution

η = η+e
iC′θ

2 + η−e
−iC′θ

2 , (3.2)

where η± are coordinate-constant spinors satisfying the projection conditions

(1 ± iγ12)η± = 0 . (3.3)

Therefore, even if we set either η+ or η− to zero, we can only obtain a globally well-defined

spinor η if C ′ = 1 (and hence δ = 0).

– 5 –
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In order to circumvent this problem, let us now suppose that it is possible to find some

current, Jµ, constructed from the matter fields, such that
∫

S∞

Jµdxµ = 2πQ , (3.4)

where Q is the topological charge of the cosmic string and S∞ is any closed curve at radial

infinity that encircles the cosmic string once. Using this current we can define a modified

covariant spinor derivative ∇̂µ by including an extra connection term as follows:

∇̂µη = ∇µη +
i

2
Jµη . (3.5)

We may now consider whether there exist any spinors that asymptotically satisfy the

modified Killing spinor equation ∇̂µη = 0. In fact, we can solve this equation asymptotically

in a similar manner to before, and now find the general asymptotic solution

η = η+e
i(C′

−Q)θ
2 + η−e

−i(C′+Q)θ
2 . (3.6)

This solution is globally well-defined, provided that ηsign(Q) = 0.

We shall see that, for many models admitting solitonic string solutions, a current Jµ,

satisfying condition (3.4) does exist. For such models, we can therefore find asymptotically

modified-Killing spinors, which satisfy the asymptotic projection condition

(1 + iκγ12)η → 0 , (3.7)

where κ = sign(Q). We also note that this asymptotic projection condition implies that,

given an asymptotically modified-Killing spinor η, we can always find an asymptotic cylin-

drical coordinate system in which the two asymptotically constant (and Killing) vectors

uµ = η̄γµη and vµ = η̄γ5γµη have the following limits as r → ∞:

u∞µdxµ = dt , v∞µ dxµ = κdz . (3.8)

Before proceeding, we ought to eliminate a potential source for confusion. In super-

gravity theories, the notation ∇̂µ is often used to denote a particular choice of modified

spinor derivative — essentially one where the current Jµ of our notation is identified with

the gravitino U(1) connection AB
µ . Although, as we shall see later on, such a choice allows

us to define modified-Killing spinors for certain models, there are other models in which

the holonomy of AB
µ no longer leads to the cancellation in (3.6) that is required for the ex-

istence of modified-Killing spinors. Furthermore, we would like our Bogomol’nyi procedure

to be just as applicable as its non-gravitational counterpart, which can be applied to a

model without regard to any supersymmetric extension the model may or may not admit.

For these reasons, we choose to define the modified spinor derivative more generally, so

that we can make a more judicious choice of connection that allows for the existence of

asymptotically modified-Killing spinors.

Using this modified spinor derivative, we may define a modified Witten-Nester 2-form

Êµν in the following manner:

Êµν = iεµνρσ
(

η̄γ5γρ∇̂ση − ∇̂σηγ5γρη
)

. (3.9)

– 6 –
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Integrating Êµν over ∂S, we find that the inclusion of the Jµ connection gives

1

2

∫

∂S

dSµνÊ
µν =

1

2

∫

∂S

dSµνE
µν − 2πκQLz , (3.10)

where Eµν is the original Witten-Nester 2-form, defined as in (2.3).

As argued in appendix A, the integral of Eµν gives the energy of the cosmic string

spacetime. Therefore, dividing (3.10) by Lz, we find that the energy per unit length,

µ, satisfies

µ = 2π|Q| + 1

2Lz

∫

∂S

dSµνÊ
µν . (3.11)

Hence we can establish the Bogomol’nyi bound

µ ≥ 2π|Q| , (3.12)

if we can demonstrate that the integral of Êµν in (3.11) is non-negative. To this end,

we repeat the manipulations that took us from the surface integral (2.2) to the volume

integral (2.5), and find that

1

2

∫

∂S

dSµνÊ
µν =

∫

S

dSµ

{

T µ
νu

ν − ǫµνρσ∂νJρvσ + 2∇̂νηγ
νµρ∇̂ρη

}

. (3.13)

If we choose the S to be normal to the 0-direction, this becomes

1

2

∫

∂S

dSµνÊ
µν =

∫

S

dS0

{

T 0
νu

ν − ǫ0ijk∂iJjvk−2gij∇̂iη
†∇̂jη−2

(

γi∇̂iη
)†(

γj∇̂jη
)

}

. (3.14)

The third term in this integral is manifestly positive-definite, whilst the fourth term is

negative-definite. However, the fourth term vanishes if the spinor parameter η satisfies

γi∇̂iη = 0 (3.15)

throughout S. In fact, as we shall demonstrate shortly, we can always choose η to satisfy

this condition, as long as the inequality

T 0
νu

ν − ǫ0ijk∂iJjvk ≥ 0 (3.16)

is satisfied throughout S. Therefore, the existence of a current Jµ that satisfies the in-

equality (3.16) is all that is required to show that the integral (3.14) is non-negative.

To summarise, we have found that the Bogomol’nyi bound (3.12) can be established

as long as we can find a current, Jµ, satisfying the asymptotic property (3.4), such that

the inequality (3.16) holds throughout S.

Let us now return to the condition (3.15). This is a modified version of the Witten-

Nester condition, which was originally introduced by Witten during his proof of the positive

energy theorem [9]. Adapting Witten’s arguments, we shall now show that there always

exists an asymptotically modified-Killing spinor field η that satisfies this condition through-

out S.

– 7 –
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We begin by defining a spinor field η0 that, in the asymptotic region, takes the value

η0 = ηκe
−κ iθ

2 , (3.17)

where ηκ is a spinor, constant in cylindrical coordinates, that satisfies the

projection condition

(1 + iκγ12)ηκ = 0 . (3.18)

From (3.6), we therefore see that η0 is an asymptotically modified-Killing spinor field. A

more careful calculation, considering the asymptotic fall-off rates of the metric and matter

fields, shows that η0 actually behaves as

γi∇̂iη0 =
∂zA(θ, z)

r
η0 + O

(

1

r2

)

, (3.19)

for some function A(θ, z), defined on the torus at radial infinity.

Now, let us consider the inhomogeneous equation

γi∇̂iη1 = −γi∇̂iη0 , (3.20)

subject to the boundary condition that η1 vanishes asymptotically. It is straightforward

to show that γi∇̂iη = 0 has no non-zero asymptotically vanishing solutions as long as the

inequality (3.16) is satisfied. Therefore, we can formally write down the solution of (3.20)

as

η1(x) =

∫

S

dyG(x, y)γi∇̂i

(

−γi∇̂iη0(y)
)

, (3.21)

where G(x, y) is the Green’s function of the positive-definite, hermitian second-order op-

erator −(iγi∇̂i)
2.

If this integral converges, it immediately follows that the spinor η = η0 + η1 is both

asymptotically modified-Killing, with limiting value η0, and also satisfies the modified

Witten-Nester condition throughout S.

To check the convergence of this integral, we perform a Fourier mode expansion of the

integrand along the circular z-direction. From (3.19), it is clear that the zero-frequency

component of the source term γi∇̂iη0 vanishes as 1/r2, whilst all higher frequency compo-

nents vanish as 1/r. On the other hand, the zero-frequency component of G(x, y) grows

logarithmically at large distances, whilst other frequency components decay exponentially.

Putting these results together, we find that this integral is convergent, and that η1 asymp-

totically vanishes, at least as fast as (log r)/r.

Bogomol’nyi bounds for the gravitational abelian-Higgs model. In order to verify

the inequality (3.16), we need to identify a suitable current Jµ, which satisfies (3.4). Clearly,

the choice of a current Jµ that satisfies these conditions must be made on a model-by-model

basis, as this inequality depends on the form of the energy-momentum tensor.

In fact, for non-gravitational models, a similar inequality,

T 0
0 − κ

(

∂rJθ − ∂θJr

)

≥ 0 , (3.22)

– 8 –
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is instrumental in establishing Bogomol’nyi bounds. Therefore, for a given gravitational

theory, it would be reasonable to identify Jµ with the current Jµ that is involved in es-

tablishing the Bogomol’nyi bound for the corresponding non-gravitational theory. Having

made this guess, we would then need to show that this current both satisfies the condi-

tion (3.4) and enables us to establish the inequality (3.16).

We shall begin by examining the gravitational abelian-Higgs model

L =
1

2
R+ ∂̂µφ

∗∂̂µφ− 1

4
FµνFµν − β2(φ∗φ− ξ)2 , (3.23)

where φ is a U(1)-charged scalar field with covariant derivative

∂̂µφ = ∂µφ− igAµφ , (3.24)

g is the gauge coupling constant and ξ is a positive constant.

The non-gravitational limit of this theory, the abelian-Higgs model, is the prototype

for the traditional Bogomol’nyi procedure: it is the starting point for the Bogomol’nyi rear-

rangement of the energy-momentum tensors of other non-gravitational theories. Similarly,

we shall see that the Bogomol’nyi rearrangement of the gravitational abelian-Higgs theory

will enable us to obtain Bogomol’nyi bounds for a variety of gravitational theories.

In the (non-gravitational) abelian-Higgs model, the current

Jµ =
i

2

[

φ
(

∂̂µφ
)∗ − φ∗

(

∂̂µφ
)]

+ gξAµ , (3.25)

satisfies the inequality (3.22) and therefore establishes a Bogomol’nyi bound. Jµ also

provides us with the topological charge Q = nξ, due to the boundary conditions satisfied

by finite-µ field configurations. Following our earlier discussion, we therefore make the

identification Jµ = Jµ. It is straightforward to check that the same current produces the

conserved topological charge Q = nξ in the gravitational abelian-Higgs theory. Therefore,

we now turn to proving the inequality (3.16) for this choice of current.

The key to verifying this inequality is to notice that, when the parameters β and g are

in the Bogomol’nyi limit (β2 = g2/2), the gravitational abelian-Higgs model is the bosonic

limit of an N = 1 supergravity theory with D-term symmetry breaking — a model with

a single charged chiral superfield, simple Kähler potential, a non-zero Fayet-Iliopoulos

constant ξ and a superpotential that is identically zero. Furthermore, our choice of Jµ

coincides with the gravitino U(1) connection AB
µ .

A gravitational Bogomol’nyi bound has already been established for this theory in [11],

where it was noticed that the total energy for this system could be written as the sum

of squares of the fermionic supersymmetry transformations. In terms of the formalism

described here, this is equivalent to showing that the left-hand side of the inequality (3.16)

can be written as a sum of squares of certain spinorial quantities, defined as follows:

δχ = − i

2
γµ

(

∂̂µφ
)

η , (3.26)

δλ = − i

4
γµνFµνη −

g

2
(φ∗φ− ξ)η . (3.27)

– 9 –
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As the notation suggests, these quantities are clearly related to the higgsino and gaugino

supersymmetry transformations respectively. In fact, each is a linear combination of su-

persymmetry transformations given by the two Weyl components that are encoded in the

Dirac spinor η. Furthermore, with Jµ defined as in (3.25), ∇̂µη is a linear combination of

gravitino supersymmetry transformations in the same manner.

With a little effort, one can show that

4δχγµδχ =
[

∂̂µφ∗∂̂νφ+ ∂̂νφ
∗∂̂µφ− δµ

ν ∂̂
ρφ∗∂̂ρφ

]

uν − ǫµνρσ∂νJρvσ −
g

2
(φ∗φ− ξ)ǫµνρσFνρvσ ,

(3.28)

and

2δλγµδλ =

[

FµρFρν −δµ
ν

(

−1

4
F ρσFρσ−

g2

2
(φ∗φ−ξ)

)

]

uν +
g

2
(φ∗φ−ξ)ǫµνρσFνρvσ . (3.29)

Hence we can rewrite the left-hand side of (3.16) as a sum of squares:

T 0
νu

ν − ǫ0ijk∂iJjvk = 4δχ†δχ+ 2δλ†δλ+

(

β2 − g2

2

)

(φ∗φ− ξ)2 . (3.30)

Therefore, provided that β2 ≥ g2/2, we obtain the Bogomol’nyi bound

µ ≥ 2π|n|ξ . (3.31)

In the Bogomol’nyi limit β2 = g2/2, this bound is saturated when each positive-definite

term in (3.14) vanishes throughout S. This yields the following Bogomol’nyi equations:

δχ = δλ = ∇̂iη = 0 . (3.32)

Notice that the Bogomol’nyi equation for η implies that uµ and vµ are constant (and

Killing) throughout S. The existence of these two Killing vectors implies that minimum-

energy cosmic string solutions are static and translationally invariant along the z-axis

(cf. the traditional gravitational Bogomol’nyi method, following [2], where these symme-

tries were assumed, rather than derived). Furthermore, regarding this theory as a D-term

supergravity model, solutions of the Bogomol’nyi equations (3.32) partially preserve super-

symmetry — i.e. they are BPS solutions.

Bogomol’nyi bounds for other gravitational field theories. Having obtained a

Bogomol’nyi bound and Bogomol’nyi equations for the gravitational abelian-Higgs theory,

it is now possible to construct Bogomol’nyi bounds and equations for other gravitational

field theories.

This is achieved by noticing that any symmetry-breaking term of the form

β2
[

M− ξ
]2
, (3.33)

where M is a real-valued quadratic form with respect to the scalar fields φi and their

complex conjugates φ∗i , can be brought to the form

β̃2

(

∑

i

qi|ψi|2 − ξ̃

)2

, (3.34)
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where ψi are a suitably chosen (charge-preserving) unitary transformation of the fields φi,

and qi are the charges of the fields ψi. Furthermore, such a transformation will leave the

kinetic terms in the energy-momentum tensor unchanged:

∑

i

|∂φi|2 =
∑

i

|∂ψi|2 . (3.35)

Therefore, this field transformation effectively turns any theory that contains a symmetry

breaking potential of the form (3.33) into an abelian-Higgs theory (perhaps with some extra

terms in the scalar potential). Hence we can minimise the energy by applying the abelian-

Higgs Bogomol’nyi rearrangement to the energy-momentum tensor, written in terms of the

new fields ψi.

As a concrete example, let us consider a popular model from N = 1 supergravity –

an F -term symmetry-breaking model containing three chiral superfields Φ0 and Φ±, with

charges 0 and ±1, and the superpotential

W = βΦ0

(

Φ+Φ− − ξF
2

)

, (3.36)

where ξF is a positive constant. This superpotential gives rise to the following symmetry-

breaking scalar potential:

V = α2(Re F )2 + Vrest , (3.37)

where

α2 = β2
[

(1 − |φ0|2)2 + |φ0|2
]

e
P

i|φi|
2
, (3.38)

F = φ+φ− − ξF /2 , (3.39)

and

Vrest = β2|φ0|2e
P

i|φi|
2
[

|φ− + φ∗+F |2 + |φ+ + φ∗−F |2
]

+ α2(Im F )2 +
g2

2f

(

|φ+|2 − |φ−|2
)2

.

(3.40)

The function f is the gauge kinetic function, which appears in the bosonic Lagrangian

as follows:

L =
1

2
R+

∑

i

∂̂µφi
∗∂̂µφi −

f

4
FµνFµν − V . (3.41)

We will leave f unspecified for now, so that we can examine how our choice of f affects

the existence, and attainability, of a Bogomol’nyi bound for this model.

We shall now consider topological cosmic strings in the bosonic limit of this model. The

scalar potential V is manifestly non-negative, and takes the minimum value of zero when

φ0 = 0, |φ+| =
√
ξ and φ− = φ∗+. Therefore the vacuum manifold has a U(1) topology, and

this model admits topological cosmic string configurations.

If we now rotate to the fields ψ0 and ψ±, where

ψ0 = φ0 and ψ± =
1√
2

(

φ± ± φ∗∓
)

, (3.42)
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then we find that V becomes

V =
α2

4

(

|ψ+|2 − |ψ−|2 − ξF

)2
+ Vrest , (3.43)

whilst the kinetic terms in the energy-momentum tensor are unchanged. Therefore, writ-

ten in terms of the new fields ψ0 and ψ±, this F -term model has an energy-momentum

tensor which is the sum of the abelian-Higgs energy-momentum tensor and the scalar po-

tential Vrest.

Hence, by generalising δχ and δλ as follows

δχi = − i

2
γµ

(

∂̂µψi

)

η , (3.44)

δλ = − i

4
γµνFµνη −

g

2

(

∑

i

qi|ψi|2 − ξF

)

η , (3.45)

and using the current

Jµ =
i

2

∑

i

qi
[

ψi

(

∂̂µψi

)∗ − ψi
∗
(

∂̂µψi

)]

+ gξFAµ , (3.46)

which can easily be shown to satisfy the condition (3.4), thereby enabling the existence of

asymptotically modified-Killing spinors, we find that

T 0
νu

ν − ǫ0ijk∂iJjvk =
∑

i

4δχi
†δχi + 2δλ†δλ+

1

4f
(α2f − 2g2)

(

∑

i

qi|ψi|2 − ξF

)2

+ Vrest .

(3.47)

Substituting this into (3.14), we obtain the Bogomol’nyi bound

µ ≥ 2π|n|ξF , (3.48)

provided that f satisfies the inequality α2f ≥ 2g2.

For the usual choice f = 1, this inequality is satisfied as long as β2 = 2g2, since

α2 ≥ 1 everywhere. However, the inequality cannot be saturated everywhere, and hence

this Bogomol’nyi bound cannot be saturated either.

For this Bogomol’nyi bound to be attainable, we need to choose f according to the

formula α2f = 2g2. This corresponds to the Bogomol’nyi limit, or critical coupling, in the

abelian-Higgs model, where we had to relate the gauge coupling constant to the mass of the

scalar field in order to obtain an attainable bound. For this choice of f , this Bogomol’nyi

bound is saturated by field configurations that satisfy the following Bogomol’nyi equations:

δχi = δλ = ∇̂iη = Vrest = 0 . (3.49)

We note that, just as the non-gravitational version of this model has embedded Nielsen-

Olesen strings as minimum-energy solutions, the above Bogomol’nyi equations are solved

by embedded minimum-energy solutions of the gravitational abelian-Higgs model.

Let us now consider the relationship between these results and supersymmetry. The

Lagrangian we have just considered is derived from the bosonic limit of an F -term N = 1

– 12 –



J
H
E
P
0
1
(
2
0
0
9
)
0
2
7

supergravity model. For this model, with its non-vanishing superpotential, it is easily seen

that the BPS equations cannot be satisfied [14] — i.e. there are no non-trivial minimum-

energy configurations that preserve any degree of supersymmetry.3 Therefore, it may

initially seem rather surprising that we have been able to obtain an energetic Bogomol’nyi

bound for this Lagrangian. However, on closer inspection, this result turns out to be a

consistent generalisation of analogous results for F -term strings in both (global) super-

symmetry and supergravity in the cylindrically symmetric limit — that, although the BPS

equations cannot be satisfied, one can still establish an energetic Bogomol’nyi bound [4].

The relationship between our energetic Bogomol’nyi bound and the non-existence of

supersymmetric solutions manifests itself in a number of ways. Firstly, it is clear that the

Bogomol’nyi equations (3.49) are not equivalent to the F -term BPS equations. Secondly,

the Bogomol’nyi bound is only attainable when α2f = 2g2 — a choice which would result in

f not being holomorphic, and therefore not a valid choice if (3.41) is to be the bosonic part

of a supergravity Lagrangian. Furthermore, and most importantly, the current Jµ is not the

gravitino U(1) connection AB
µ — a key result that enabled us to find an appropriate spinor

parameter η for the Witten-Nester energy when Killing spinors, in the usual supergravity

sense, cannot exist for δ > 0.

4. Comparison to Bogomol’nyi bounds for non-gravitational theories

There is a strong analogy between the gravitational Bogomol’nyi method we have presented

here and the traditional Bogomol’nyi procedure for vortices in non-gravitational models.

In fact, it is more appropriate to say that our new method is really a generalisation of the

non-gravitational Bogomol’nyi method.

This analogy begins with the Witten-Nester energy expression which, as mentioned

earlier, is the gravitational energy expression that is closest, for our purposes, to the defini-

tion of the total energy in Minkowski spacetime. Using the Witten-Nester energy, we were

able to come up with an inequality (3.16), that must be satisfied in order to establish a

gravitational Bogomol’nyi bound. As we saw there, this inequality is a generalised version

of the inequality (3.22) that is obtained by the non-gravitational Bogomol’nyi procedure.

Furthermore, the identities (3.28) and (3.29) are generalisations of the Minkowski

spacetime identities
∣

∣

∣

∣

∂̂rφ± i

r
∂̂θφ

∣

∣

∣

∣

2

=
∣

∣∂̂rφ
∣

∣

2
+

1

r2
∣

∣∂̂θφ
∣

∣

2
+ ∓1

r
(∂rJθ − ∂θJr) ∓

g

r
Frθ(φ

∗φ− ξ) , (4.1)

and
1

2

(

Frθ

r
± g(φ∗φ− ξ)

)2

=
Frθ

2

2r2
+
g2

2
(φ∗φ− ξ)2 ± g

r
Frθ(φ

∗φ− ξ) , (4.2)

that are used in the non-gravitational Bogomol’nyi method to write the left-hand side

of (3.22) as a sum of squares.

3In this paper, we take Bogomol’nyi equations to be the equations that characterise minimum-energy

solutions, whilst BPS equations are the equations that characterise partially supersymmetric field config-

urations. Although these two properties often come hand in hand, this is not the case here, and we must

therefore distinguish between the equations that characterise these two properties.
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Finally, the field transformation technique discussed above — which relates many

gravitational field theories to the gravitational abelian-Higgs model, and therefore allows us

to construct Bogomol’nyi bounds for these theories — also relates the Bogomol’nyi bounds

and equations of the non-gravitational versions of these theories to the non-gravitational

abelian-Higgs model.

This correspondence between the gravitational Bogomol’nyi method presented here

and the traditional Bogomol’nyi method for non-gravitational theories demonstrates that

non-gravitational Bogomol’nyi bounds do survive coupling to gravity. Wherever we can

construct a Bogomol’nyi bound for a non-gravitational theory, we can use the techniques

described above to generalise this Bogomol’nyi rearrangement, and therefore provide a

Bogomol’nyi bound for the gravitational version of the same theory.

In this manner, we can establish Bogomol’nyi bounds for many other gravitational

theories that are currently of cosmological interest — such as P -term models [5], semi-

local models [15], and D-term models with non-zero superpotentials — where Bogomol’nyi

rearrangements are already known in the non-gravitational limit.

5. Conclusion

We have presented a general method for establishing Bogomol’nyi bounds and finding

minimum-energy cosmic string solutions that can be applied to a wide range of gravi-

tational field theories that contain symmetry-breaking scalar potentials. Unlike the tra-

ditional method for establishing energy bounds for gravitational theories [2], this new

method does not involve making any prior assumptions about the symmetries of minimum-

energy solutions.

Our work generalises the results of [10] and [11], regarding certain D-term supergravity

models. Although the algebraic manipulations that enabled us to derive these bounds were

borrowed from D-term supergravity, they were actually found to be applicable to a wide

variety of (possibly non-supersymmetric) theories.

In fact we have seen, in section 4, that these manipulations, although taken from

a supersymmetric context, are really the covariant generalisations of the key identities

that were used to derive the non-gravitational Bogomol’nyi bound for the abelian-Higgs

model. In this sense, our procedure is really a covariant generalisation of the traditional

Bogomol’nyi procedure. Therefore, we can confirm that all results that have been proven

so far by making assumptions about the symmetry of the metric and using the traditional

Bogomol’nyi technique, still hold when one allows for asymmetric perturbations.

We applied our technique to the particular example of the bosonic Lagrangian for

F -term strings in N = 1 supergravity. Here, we found an energetic Bogomol’nyi bound

and corresponding Bogomol’nyi equations — however, this bound is unnattainable for any

holomorphic choice of gauge kinetic function. These results, which have been derived for

cylindrically symmetric strings in [4], have therefore been generalised by this technique to

cover cylindrically asymmetric field configurations.

The Bogomol’nyi equations obtained using this new technique confirm that minimum-

energy solutions are static and straight — symmetries that were previously assumed rather
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than proved. Furthermore these equations allow for the same cylindrically symmetric

single-vortex solutions as the Bogomol’nyi equations of the traditional method, thereby

confirming the stability of these solutions against decay to asymmetric field configurations

of lower energy.

However, the new Bogomol’nyi equations do not necessarily imply that minimum-

energy solutions must be cylindrically symmetric. Therefore, it would be interesting to

look for multi-string configurations that saturate the Bogomol’nyi bound, in analogy with

the static multi-vortex solutions that exist in non-gravitational field theories. To find such

solutions, one would presumably have to repeat Taubes’s analysis of the abelian-Higgs

Bogomol’nyi equations [16] for the gravitational Bogomol’nyi equations (3.32).
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A. The energy of cosmic string spacetimes

In section 2 we claimed that any surface integral expression for the energy of a canonical

asymptotically flat spacetime can also be used to calculate the energy of a cosmic string

spacetime, provided that the surface of integration is changed from the sphere at spatial

infinity to the torus at radial infinity. Then, in section 3, we employed this result to

interpret the surface integral of Eµν .

There are many ways to check this assertion. One would be to see whether an en-

ergy expression obtained in this manner is equivalent to the gravitational Hamiltonian

obtained by following the background-subtraction procedure described by Hawking and

Horowitz [17]. However, here we shall adopt a more pedagogical approach by employing

the principles that were used to define the ADM energy of canonical asymptotically flat

spacetimes to define an equivalent energy for cosmic string spacetimes.

We begin by considering linearised gravity on a static, cylindrically symmetric back-

ground. More specifically, let us consider a spacetime that admits global cylindrical polar

coordinates, in which the metric may be written

gµν = g̃µν + ǫhµν , (A.1)

where

g̃µνdxµdxν = dt2 − dr2 − C(r)2dθ2 − dz2 (A.2)

is a static, cylindrically symmetric background metric, and ǫ is a small parameter, with

respect to which we shall linearise all quantities. We shall also assume that C ′(0) = 0 and

C(r) → (1 − δ
2π

)r as r → ∞, so that the background metric is completely regular, with

deficit angle δ.

In the linearised theory, the dynamics of the matter fields take place with respect to

the fixed background (to leading order), and therefore the energy may be defined in a

– 15 –



J
H
E
P
0
1
(
2
0
0
9
)
0
2
7

special-relativistic sense, in terms of the linearised energy-momentum tensor:

pµuµ =

∫

S

d3x
√

−g̃T (L)0
νu

ν , (A.3)

where S is a background-static, spacelike hypersurface whose normal vector points in the

(timelike and background-Killing) t-direction, and uµ is a constant, timelike vector that

represents the 4-velocity of the observer at spacelike infinity who is measuring the energy

of the system. Due to Einstein’s equation, we can replace T
(L)µ

ν
with G

(L)µ
ν
, the linearised

Einstein tensor, in the above expression.

It is possible to express the linearised Riemann tensor R
(L)µν

ρσ
in terms of the back-

ground Riemann tensor R̃µν
ρσ, the background metric connection Γ̃µν

ρ, and the linearised

perturbation of the spin connection ∆ω µν
ρ , in the following manner:

R
(L)µν

ρσ
= R̃µν

ρσ + 2
(

∆ω
µν

[ρ ,σ] − 2∆ω
τ [µ

[ρ Γ̃
ν]

σ]τ

)

. (A.4)

With the aid of this expression, along with the identity

Gµ
ν =

1

4
ǫρµγδǫρναβR

αβ
γδ , (A.5)

we can rewrite (A.3) as follows:

pµuµ = 2πδLz +
1

4

∫

∂S

dSµνε
µνρσεδαβσ∆ω αβ

ρ uδ . (A.6)

We note that this expression is formally equivalent to Nester’s expression of the ADM

energy in [13].

Now that we have an expression for the energy which only depends on the asymptotic

behaviour of the system, we may allow uµ to be any asymptotically constant, timelike vector

field. Similarly, we may now allow S to be any maximal spacelike hypersurface, with a

timelike, asymptotically Killing normal vector. In this manner, we obtain an expression for

the energy which only depends on the asymptotic form of the metric.

Now we invoke the canonical argument that, on physical grounds, we require the

mass of a system to be determined purely by the long-distance behaviour of the metric,

and hence be independent of the fields in the interior of the system. This implies that

the expression (A.6) represents the total energy of any spacetime that is asymptotically

cylindrically symmetric, irrespective of its behaviour in the interior. In other words, (A.6)

represents the energy of any cosmic string spacetime.

It is straightforward to check that the surface integral of Eµν equals this energy ex-

pression, by decomposing the spin connection in the asymptotic region as

ω
αβ

µ = ω̃
αβ

µ + ∆ω
αβ

µ , (A.7)

where ω̃
αβ

µ is the spin connection for a cylindrically symmetric metric of identical conical

deficit angle.
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